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The interaction between lI9Sn and solute atoms dissolved 
in iron; the case of beryllium alloy 
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Nuclear Physics Division. Harwell Laboratory, UKAEA, Oxon OX1 1 ORA, U K  

Received 1 August 1988 

Abstract. Be is a small atom (V = 4.89 cm3 mol-') compared with Fe  and Sn (V = 7.09 and 
16.30 cm3 mol-' respectively). As a result, size mismatch theories predict an attractive 
component of the potential between Be and Sn when dissolved in iron. We present spectra 
of "'Sn in a FeBe alloy, from which we deduce repulsive interactions at first- and second- 
neighbour distances. The first-neighbour interaction is in fair agreement with the semi- 
empirical theory of Miedema and Krolas. The repulsive interaction at the second-neighbour 
distance contradicts the expectation developed in earlier papers. We also make some 
comments on the influence of solute-solute interactions on  the deduction of probe-solute 
interaction potentials. 

1. Introduction 

1.1. Earlier results and their interpretation 
In the last few years. substantial advances have been made in the theory of the physical 
properties of metals, many of which can now be calculated with high accuracy from 
quantum mechanical principles (Moruzzi et a1 1978). Less progress has been made with 
the more complicated problem of the structure of alloys, and for this reason there has 
been much interest in semi-empirical theories, of which the most successful is due to 
Miedema and his co-workers (Miedema et a1 1977). Working from two parameters for 
each metal and a small number of correction terms depending on where the metals A 
and B lie in the Periodic Table, accurate predictions of the heats of solution of A in B 
can be made. 

Miedema treats the metal atoms as small pieces of the metals in contact, and the two 
parameters are regarded as (i) a measure of the work function, and (ii) a measure of the 
charge density at the surface of the Wigner-Seitz sphere. In solution, the difference 
between the work functions leads to a flow of charge from one atom to another, giving 
rise to a negative contribution to the heat of formation of the alloy. The smoothing of 
the difference between charge densities at the interface between the atoms makes a 
positive contribution to the heat of formation. 

The physical basis of the Miedema model has been criticised in several publications 
(Williams et a1 1980, Chelikowsky and Phillips 1977, Pettifor 1987). We hold the view 
that the model is inconsistent with the quantum mechanical theory of metals. The 
adoption of the model, therefore, depends on (i) the simplicity with which a prediction 
is obtained, (ii) its accuracy, and (iii) the stimulation it may give to new lines of 
investigation. 
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In a development of the theory, Krolas (1981) proposed to regard the interaction 
between two solute atoms B and C,  when they become near neighbours in a metal A ,  as 
arising from the break up of an AB and an AC bond and the creation of a BC bond. 
Thus we may write for the binding energy E,, betwen B and C 

E h  = AEB, - AE,,iB - AEA, (1.1) 
where AEXy represents the energy of the nearest-neighbour interaction between X and 
Y .  He then compared this expression with 

6H = AH,, - AH,B - AHA, (1.2) 
where AH,, is the heat of solution of X in Y, and plotted Eb against 6 H / Z ,  where Z 
is the coordination number in the lattice. When the heats of solution were known 
experimentally, he used the experimental values. When they were not known, he used 
the value predicted by the Miedema expression. 

Krolas observed a good correlation between Eh and dH/Z.  As the heats of formation 
were known experimentally in only a third of the cases, it is a simple step to calculate 
dH/Z for two atoms B and C dissolved in A entirely from the Miedema parameters. We 
then call the value of Eh in (1.1) the Miedema-Krolas prediction, EViK. 

The discrepancies between EbiK and the measured values for 27 pair interactions in 
hosts Au, Ag, Cu and Fe were considered by Alonso eta1 (1985), and shown to correlate 
with (V, - V,)(V, - V,) where V, is the atomic volume of element X, taken from 
Gschneidner (1964). The form of this expression was justified by reference to the work 
of Eshelby (1956), which indicates that the elastic contribution to the hea: of solution is 
quadratic in the size mismatch, i .e.  

AffSb;” ( v ,  - VB)’. (1.3) 

Assuming that the constant of proportionality is the same in all cases, the given expression 
follows. The magnitude of the size mismatch term was found to be given by 

= a(V,  - V,)(vA - v, )  (1.4) 
with a = 1.7 meV (atomic volume)-2. 

In a study of the interaction potentials between “’Sn and s-p elements of the fourth 
period dissolved in iron, Cranshaw (1987a) showed that the best prediction of the 
potential at the first neighbour distance was 

E r d  1 = + - vB>(vA - vC) (1.5) 

where EpK is the Miedema-Krolas prediction, and a was again 1.7meV (atomic 
volume)-’. 

At second-neighbour distances, there was no significant correlation between the 
measured potential and the Miedema-Krolas prediction. On the other hand, there 
was a strong correlation with atomic volume, giving as an expression for the second- 
neighbour interaction 

E r  = - 36(VA - V,) meV. (1.6) 

Note that for iron and tin, V ,  - V ,  is -9.2, so that the size mismatch term at first 
neighbours is - 15.6(VA - VB), whereas at second neighbours it is -36(VA - VB). No 
explanation can be given for the fact that the size mismatch energy is 2.3 times greater 
at the second-neighbour distance than at the first-neighbour distance, but one may 
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speculate that it is a property of the BCC lattice, which is not close packed. 
In a later publication (Cranshaw 1987b) it was shown that for the interaction between 

Sn and transition element impurities, an expression like 1.5 was still a useful predictor 
of the interaction energy, but with N = 3.4. At the second-neighbour distance, almost 
no correlation could be found between the measured interaction potential and 
(V,  - V,). but a least-squares straight line through the data gave almost exactly the 
same expression as 1.6. though the residuals are very large. 

Fitting the data for s-p elements and transition elements at second-neighbour dis- 
tances with a linear combination of a 6Vterm and a Miedema-Krolas term reduced the 
RMS error in the prediction by less than 1%. indicating again that the Miedema-Krolas 
interaction acts only at first neighbours. 

In Cranshaw (1987a), a short discussion was given of the uncertainty arising from 
the lack of definition of the atomic volume to be attributed to the BC atoms when they 
are near neighbours. This is an important quantity, because it determines the area of the 
atoms which is supposed to be in contact. The uncertainty was shown in an appendix to 
be equivalent to an uncertainty in coordination number, 2. It is therefore of interest to 
find experimentally the value of Z which gives the best predictions. Over all the data on 
interactions between "9Sn and solute atoms in iron, the best value is found to be Z = 
8.0ifthesizeeffectsareignored, and7.8iftheyare included. A s 2  = 8isthecoordination 
number for BCC iron, we consider that these values confirm that the Miedema-Krolas 
theory, so far as it can be applied at all, applies to first-neighbour interactions. 

A weakness in the above evidence lies in the fact that all the measured second- 
neighbour interactions are repulsive, and all the values of 6Vare either small or positive. 
The test of the hypothesis would clearly be more stringent if an element were found for 
which 6V is negative, leading to the prediction of an attractive force at the second- 
neighbour distance, and an attractive component at the first-neighbour distance. The 
only atom smaller than iron which can be expected to dissolve in iron substitutionally is 
Be, and in this work, we present observations on an alloy of iron containing approxi- 
mately 4% Be and 0.2% "'Sn. 

1.2. The basis of the deduction of interaction potentials 
We suppose that when one atom of element B and one atom of element C are dissolved 
in a third element A, the energy of the system depends on the distance between B and 
C. In order to design a practical experiment, we are forced to use finite concentrations 
of B and C in A. It is fortunate that good Mossbauer spectra of "'Sn in iron can be 
obtained with an Sn concentration of 0.2%. Interactions between Sn atoms can then be 
neglected. A concentration of alloying element of about 3% gives reasonable numbers 
of B-C pairs. We then envisage neighbour shells around the Sn atom at which the 
potentials are Ehl ,  i = 1, 2 . . . The concentration, c,, of B atoms in these shells is given 
by (Hrynkiewicz and Krolas 1983) 

C,(1 - C,)-' = C,(1 - C x ) - '  exp(-E,,/kT) (1.7) 

where C, is the concentration far from Sn atoms, or, in dilute systems, the sample 
concentration. 

1.3. Solute-solute interactions 
In the work on transition element solutes, it was noted that the components due to Sn 
atoms with a Cr first neighbour or second neighbour (called x and z in the histogram of 
the probability distribution of H )  were sharp, but that a broad component was present 
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which was attributed to Sn atoms with third-neighbour Cr atoms. This implies that when 
a Sn atom has either a first- or second-neighbour Cr atom, it does not have third- 
neighbour Cr atoms. It has been a central assumption in this work that the spatial 
distribution of atoms is the result of central pair-wise interactions, and therefore this 
result must be attributed to interactions between pairs of Cr atoms. It was pointed out 
that DO3 ordering, in which the Cr atoms would be confined to one FCC sublattice of the 
BCC iron lattice would bring about the required distribution of Cr atoms, though DO, 
ordering does not occur in  iron-chromium alloys near 25% Cr, and is unlikely to occur 
at concentrations near 5% Cr. Nevertheless, because the spectra of 119Sn in alloys of 
iron with Be and Cr bear some resemblances to each other. we feel it necessary to 
reconsider the problem of the effects of interactions between the atoms of the minor 
constituent of the alloy on the measurement of the interactions between these atoms 
and the tin probe. 

Accordingly, we envisage an extreme model, called model I11 to distinguish it from 
the models used earlier, in which the solute atoms, for example, Be atoms, even at low 
concentrations are confined to one FCC sublattice of the BCC lattice, in accord with DO3 
order, and disregard the question of what Be-Be atom interactions might bring this 
about. The concentration of solute atoms on the FCC sublattice is then 4C where Cis the 
alloy concentration, and even in the absence of interactions between Sn atoms and Be 
atoms, the probabilities ofoccurrerice,y(i, j ,  k ) ,  of Sn atoms with i, j ,  k Be atoms in the 
first-, second- and third-neighbour shells are strongly affected. In fact, p ( i , j ,  k )  = 0 if 
any two of i ,  j ,  k are not equal to 0. This clearly has implications for the deduction of 
interaction potentials from equation (1.7), and in the present work we have therefore 
used not only the fitting routines described in the earlierpapers, but an additional routine 
based on the extreme model just described. 

2. Experimental details 
An ingot of iron with 0.5 wt% Be was made at the Royal Ordnance Factory, Cardiff. 
Pieces of foil rolled from this ingot to 125 pm thickness and approximately 20 mm square 
were cleaned by ion bombardment in an evaporating chamber, and the correct quantity 
of I’%n evaporated onto both sides to achieve an atomic concentration of 0.2%. The 
foil was then sealed in a silica capsule under atm of argon, and heated at 1273 K for 
48 h to permit diffusion of the Sn throughout the foil. 

The capsule was removed from the furnace and allowed to cool. Under these 
conditions, diffusion effectively ceases at about 700 K, and in the analysis, the state of 
the foil is assumed to correspond to thermodynamic equilibrium at this temperature. 
The spectra were taken in a conventional constant velocity spectrometer at 77 K. 

The concentration was checked by taking a j7Fe spectrum of a foil rolled to 25 pm. 
The intensities of the two satellite lines corresponding to iron with one or two Be 
neighbours were 24.5 and 2.2% respectively, leading to an estimate of the Be con- 
centration of 3.6% atomic. 

3. Results 

3.1. Model I 
The lI9Sn spectrum can be seen in figure 1. Below the spectrum is shown the probability 
distribution of H ,  called p ( H ) ,  computed using the methods of Le Caer and Dubois 
(1979). The value ofp(H) has significant intensity in three regions marked x ,  y ,  and z .  
The regions marked x and z are attributed to Sn atoms with Be atoms in the first- and 
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1st shell 2nd shell 3rd shell 

(a )  
AH (kOe) 65 - 33 14 

Eh (mev)  131 85 (0) 
EfK (mev)  163 0 
E r ( m e V )  -34 - 79 

c (9%) 0.41 0.87 (3.6) 

(b)  
AH (kOe) 65 - 33 10 
Eh (mev) 122 69 0 

Table 1. ( a )  The values of the parameters found 
by fitting the spectrum shown in figure 1, using 
model I described in the text. AH is the change in 
hyperfine field, and c the Be concentration in each 
shell. The concentration in the third shell is not 
well determined, and is assumed to be the speci- 
men concentration. In the third row, Eb is the 
measured value of the interaction potential. In 
the fourth row, E y K  is the potential predicted by 
the Miedema-Krolas model and in the fifth row, 
Ezze is the interaction predicted for size mismatch 
effects. ( b )  The values of the parameters found by 
using model I11 described in the text. 

second-neighbour shells respectively and the region marked y is attributed to Sn atoms 
with Be atoms in the third neighbour shell. Although the spectrum is not as striking as 
the spectra for Cr alloys, it is clear that the region y is appreciably broader than the 
regions x and z ,  implying that when the Sn atom has a first- or second-neighbour Be 
atom, it does not have Be atoms in its third-neighbour shell. We have used a model 
(called model I) which excludes such configurations for fitting the spectra of 'I9Sn in 
transition-metal alloys (Cranshaw 1987b). The same program can be used to fit the 
present spectrum, and gives the result shown in table 1 (a ) .  The first row gives the value 
of A H , ,  the change of field produced by the presence of a Be atom in the ith neighbour 
shell, i = 1, 2, 3. For i = 1 and 2,  the values of AH are quite well determined, but the 
value found for the third shell depends crucially on the value of c3, the concentration of 
Be in the third shell. The data are not sufficiently accurate to determine both A H 3  and 
cg together. We have assumed c3 = 3.6%, which is equivalent to assuming E b j ,  the 
potential at the third-neighbour distance, is zero. Because of this uncertainty, c3 and 
Eb3 are written in brackets. 

The second row gives the concentration of Be found in the first and second shell 
derived from the intensity of the corresponding component. We regard these values of 
the concentration as the equilibrium values at about 700 K. It is then straightforward to 
deduce the strengths of the potential at the first and second shells using equation (1.7), 
and these are given in the third row. The fourth and fifth rows give the predicted 
potentials, using the expressions given in the introduction. 

3.2. Model IIl  
In model 111, Sn atoms may lie on any of the four FCC sublattices of the BCC lattice. Two 
of these, I and 11, are equivalent, and can have four Be atoms in their first-neighbour 
shell. Sn atoms on sub-lattice I11 can have six Be atoms in their second-neighbour shell, 
and Sn atoms sharing sublattice IV with Be atoms can have 12 Be atonis in their third- 
neighbour shell. The interaction between Be atoms and Sn is now expressed by the 
differential occupation of these four sublattices by Sn atoms. 

Let us suppose that for any sublattice, i, the probability of j Be atoms in the appro- 
priate neighbour shell is given by p(O), p (  l), . . . , p (  j ) ,  . . . . The energy of a Sn atom on 
this sublattice will be 0, Eb,, 2Eb,, . . . , jEb, according to the number,j, of its neighbours. 
Therefore the relative occupation of these sites at temperature Twill be 
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where r, = exp( - E,,, / k T ) .  If, for simplicity, we assume that thep are given by a Poisson 
distribution, with mean m,, i.e. 

p( j )  = exp(-m,)(l, m, ,  mf/2!,  . . . ,  mj/j! ,  . . . 

d i )  = A(1, m,r , ,  ( m , r , ) 2 / 2 ! ,  . . . ,  (m,r,)’/j!) 

(3.2) 

(3.3) 

the relative occupation of the Sn sites will be 

i.e. a Poisson distribution with mean m,r,. In thermal equilibrium, the occupation of all 
zero energy sites must be equal, since atoms can be exchanged among them with no 
change of energy. It follows that A is given by exp(-m,). 

We have therefore to compute three components of the spectrum corresponding to 
the three crystallographically distinct sublattices with the relative numbers of possible 
Sn sites 0.5, 0.25 and 0.25 - 4C. The magnitudes of the fields are H,,, + ;AH, ,  where 
Hooo is the field at Sn in the absence of neighbours in the first three neighbour shells. In 
our case we have two values of r ,  r i  and r 2 ,  for the first- and second-neighbour shells. In 
the third-neighbour shell, we assume rg  = 1. 

This model was checked by a Monte Carlo calculation using a BCC lattice of dimen- 
sions 20 X 20 X 20 containing 576 Be atoms and 32 Sn atoms, corresponding to con- 
centrations of 3.6 and 0.2% respectively. The values of E b l  and Eb2 were set at 100 meV, 
and the temperature at 700 K. Two initial conditions could be chosen corresponding to 
(i) a high temperature giving a random distribution of Sn atoms, (ii) a low temperature 
with all Sn atoms on the Be sublattice. The method of Metropolis et a1 (1953) was used, 
and after 150 exchanges of Sn atoms with Fe atoms, no difference could be detected 
between the final distributions of Sn atoms, indicating that thermal equilibrium had been 
reached. After applying equations (3.1)-(3.3) an average of 3000repetitions gave values 
of Ebl and Eb2 of 89 and 92 meV, in satisfactory agreement with the initial conditions. 

The results of the fitting by model 111 are given in table l (b) ,  and the components 
due to Sn atoms on the three inequivalent sublattices are drawn on figure 1. As expected, 
the strengths of the interaction potentials given by model I11 are lower than those given 
by model I ,  an effect which is greater at second neighbours than at first. 

4. Discussion 

4. I .  Errors in determination of potentials 
4.1.1. Errors of statistical origin. We have determined the errors which arise from the 
statistical nature of the data for model I11 in the following way. From the original 
spectrum, sixteen new spectra were generated by adding to the county, in the ith channel 
a random number from a Gaussian distribution with mean zero and variance yI, i = 1, 
512. We have thus a set of spectra differing from each other by the same amount that 
the original spectrum may be supposed to differ from the ideal spectrum with infinitely 
many counts in each channel. These spectra were then fitted by the program for model 
I11 and the values of the relevant variables noted. The variance of these values is taken 
to be the variance of the values found for the original spectrum. 

The RMS error on the potential values Ehl and Eb2 found in this way for model I11 are 
7 and 5 meV respectively, quite comparable with the value 13 meV found for Cr alloys 
obtained by observing the results for several different spectra. The RMS error on the 
values of AH of statistical origin is 3.5 kOe. 

4.1.2. Uncertainties due to model dependency. We have discussed briefly the effect that 



Interaction between '19Sn and solute atoms 67 1 

Velocity (mm 5. ' )  

Figure 1. The spectrum of 0.2% "'Sn in an 
alloy of iron with 3.6% Be. The full curve 
is the fitobtainedusingmodel IIIdescribed 
in the text, and the broken lines show the 
components contributed by the three 
inequivalent sublattices: -.-.- , com- 
ponent x (first-neighbour Be atoms); --- 
component y (third-neighbour Be atoms); 
. . . . .  , component z (second-neighbour Be 
atoms). 

Be-Be interactions may have on the deduction of the strength of Be-Sn interactions in 
the introduction, and have now shown that a rather extreme model of Be ordering 
produces changes of the order of 20% in the estimated value of the Be-Sn interaction. 
Using the same model for an iron-chromium alloy described in Cranshaw (1987b) 
changed the estimate of the Cr-Sn interaction at the first-neighbour distance from 
59 meV to 48 meV. 

A further complication arises when ordered or partially ordered models are con- 
templated, relating to the line widths of the components. We regard line widths greater 
than the natural width as due to the effects of many small changes of hyperfine field 
produced by distant neighbours. If the alloys are random, the extra width is the same 
for all sites; if the model is strongly ordered, this cannot be relied upon. We have found 
by experience that some models, and particularly model 111 become unstable and give 
unphysical results, such as negative intensities, if all line widths are treated as variables. 
As a matter of practical necessity, they have therefore been treated as the same. 

4.2.  Interaction potentials 
Bearing in mind the comments in 4.1, table 1 ( a )  and ( b )  show that the predicted value 
of E b l  is consistent with the range of values deduced from the spectra. At the second- 
neighbour distance, the predicted value of Ebz is in sharp disagreement with the 
observations. 

In an earlier paper (Cranshaw 1987b), we mentioned that the lattice expansion 
caused by the solution of the alloying element might a priori be thought to be a more 
reasonable parameter to account for size mismatch effects than atomic volume, but 
noticed that in the case of s-p elements, the parameter d In a / d c ,  where a is the lattice 
parameter and c the concentrationcorrelatedlessclosely with Eb2 than SV, the difference 
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in atomic volume. In the present case, Be causes a strong reduction of the lattice 
parameter, i.e. d In a/dc is negative in contrast to the s-p elements under consideration, 
but Eb2 has the same sign as is found for the s-p elements. We cannot escape the 
conclusion that size mismatch effects whether described by 6V or d In a/dc do not 
adequately describe the interaction found at second-neighbour distances. 

4.3. Earlier work 
In earlier work, we found closer agreement between the predictions of the Miedema- 
Krolas theory and the measured values for s-p elements than for transition elements 
and the values of Eb2 for s-p elements behaved in a more regular fashion than the values 
for transition elements. It now seems possible that this may be due to a more irregular 
behaviour of solute-solute interactions between transition element atoms than between 
s-p element atoms. 

5. Conclusion 
(i) We have measured the interaction potential between l19Sn atoms and atoms of 

Be dissolved in iron at the first- and second-neighbour distances. The interaction at the 
first-neighbour distance is in good agreement with the Miedema-Krolas theory, but at 
second-neighbour distances there is sharp disagreement with predictions based on size 
mismatch effects. 

(ii) We have investigated possible effects of the interaction between solute atoms on 
the deduction of interaction potentials between the probe atom, Sn, and the alloying 
solute atoms. We find that at the concentrations used in this work, different assumptions 
about the spatial distribution of solute atoms can result in values for the interaction 
potentials differing by about 20% from each other. 
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